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Energy, water, and land systems interact in many ways. En-
ergy projects (energy production and delivery) require varying 
amounts of water and land; water projects (water supply and 
irrigation) require energy and land; and land-based activities 
(agriculture and forestry) depend upon energy and water. In-
creasing population and a growing economy intensify these 
interactions.1 Each sector is directly impacted by the others 
and by climate change, and each sector is a target for adapta-
tion and mitigation efforts. Better understanding of the con-
nections between and among energy, water, and land systems 
can improve our capacity to predict, prepare for, and mitigate 
climate change.

Challenges from climate change will arise from long-term, 
gradual changes, such as sea level rise, as well as from projected 
changes in weather extremes that have more sudden impacts. 
The independent implications of climate change for the 
energy, water, and land sectors have been studied extensively 
(see Ch. 4: Energy, Ch. 3: Water, and Ch. 13: Land Use & Land 
Cover Change). However, there are few analyses that capture 
the interactions among and competition for resources within 
these three sectors.1 Very little information is available to 
evaluate the implications for decision-making and planning, 
including legal, social, political, and other decisions.

Climate change is not the only factor driving changes. 
Other environmental and socioeconomic stressors interact 
with climate change and affect vulnerability and response 
strategies with respect to energy, water, and land systems. 
The availability and use of energy, water, and land resources 
and the ways in which they interact vary across the nation. 
Regions in the United States differ in their 1) energy mix (solar, 
wind, coal, geothermal, hydropower, nuclear, natural gas, 
petroleum, ethanol); 2) observed and projected precipitation 

and temperature patterns; 3) sources and quality of available 
water resources (for example, ground, surface, recycled); 4) 
technologies for storing, transporting, treating and using water; 
and 5) land use and land cover (see Ch. 13: Land Use & Land 
Cover Change). Decision-making processes for each sector also 
differ, and decisions often transcend scales, from local to state 
to federal, meaning that mitigation and adaptation options 
differ widely.

Given the many mitigation and adaptation opportunities avail-
able through the energy sector, a focus on energy is a useful 

Key Messages
1. Energy, water, and land systems interact in many ways. Climate change affects the individual  
 sectors and their interactions; the combination of these factors affects climate change   
 vulnerability as well as adaptation and mitigation options for different regions of the country.

2. The dependence of energy systems on land and water supplies will influence the development  
 of these systems and options for reducing greenhouse gas emissions, as well as their climate  
 change vulnerability.

3. Jointly considering risks, vulnerabilities, and opportunities associated with energy, water, and  
 land use is challenging, but can improve the identification and evaluation of options for reducing  
 climate change impacts.

ENERGY, 
WATER, AND LAND USE10

Figure 10.1. The interactions between and among the energy, 
water, land, and climate systems take place within a social and 
economic context. (Figure source: Skaggs et al. 20121).

Energy, Water, Land, and Climate Interactions
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way to highlight the interactions among energy, water, and 
land as well as intersections with climate and other stressors. 
For example, energy production already competes for water 
resources with agriculture, direct human uses, and natural sys-
tems. Climate-driven changes in land cover and land use are 
projected to further affect water quality and availability, in-
creasing the competition for water needed for energy produc-

tion. In turn, diminishing water quality and availability means 
that there will be a need for more energy to purify water and 
more infrastructure on land to store and distribute water. 
Stakeholders need to understand the interconnected nature of 
climate change impacts, and the value of assessments would 
be improved if risks and vulnerabilities were evaluated from a 
cross-sector standpoint.2

Key Message 1: Cascading Events

Energy, water, and land systems interact in many ways. Climate change affects the individual 
sectors and their interactions; the combination of these factors affects climate change 

vulnerability as well as adaptation and mitigation options for different regions of the country.

Energy production, land use, and water resources are linked 
in increasingly complex ways. In some parts of the country, 
electric utilities and energy companies compete with farmers 
and ranchers, other industries, and municipalities for water 
rights and availability, which are also constrained by interstate 
and international commitments. Private and public sector 
decision-makers must consider the impacts of strained water 
supplies on agricultural, ecological, industrial, urban, and public 
health needs. Across the country, these intertwined sectors 

will witness increased stresses due to climate changes that 
are projected to lower water quality and/or quantity in many 
regions and change heating and cooling electricity demands.

The links between and among energy, water, and land sectors 
mean that they are susceptible to cascading effects from one 
sector to the next. An example is found in the drought and 
heat waves experienced across much of the U.S. during the 
summers of 2011 and 2012. In 2011, drought spread across 
the south-central U.S., causing a series of energy, water, and 
land impacts that demonstrate the connections among these 
sectors. Texans, for example, experienced the hottest and 
driest summer on record. Summer average temperatures 
were 5.2°F higher than normal, and precipitation was lower 
than previous records set in 1956. The associated heat wave, 
with temperatures above 100°F for 40 consecutive days, 
together with drought, strained the region’s energy and water 
resources.3,4,5

These extreme climate events resulted in cascading effects 
across energy, water, and land systems. High temperatures 
caused increased demand for electricity for air conditioning, 
which corresponded to increased water withdrawal and 
consumption for electricity generation. Heat, increased 
evaporation, drier soils, and lack of rain led to higher irrigation 
demands, which added stress on water resources required for 
energy production. At the same time, low-flowing and warmer 
rivers threatened to suspend power plant production in several 
locations, reducing the options for dealing with the concurrent 
increase in electricity demand. 

The impacts on land resources and land use were dramatic. 
Drought reduced crop yields and affected livestock, costing 
Texas farmers and ranchers more than $5 billion, a 28% loss 
compared to average revenues of the previous four years.6 
With increased feed costs, ranchers were forced to sell 
livestock at lower profit. Drought increased tree mortality,7 
providing more fuel for record wildfires that burned 3.8 million 
acres (an area about the size of Connecticut) and destroyed 
2,763 homes.8

Figure 10.2. Map shows numbers of days with temperatures 
above 100°F during 2011. The black circles denote the 
location of observing stations recording 100°F days. The 
number of days with temperatures exceeding 100°F is 
expected to increase. The record temperatures and drought 
during the summer of 2011 represent conditions that will be 
more likely in the U.S. as climate change continues. When 
outdoor temperatures increase, electricity demands for 
cooling increase, water availability decreases, and water 
temperatures increase. Alternative energy technologies 
may require little water (for example, solar and wind) and 
can enhance resilience of the electricity sector, but still face 
land-use and habitat considerations. The projected increases 
in drought and heat waves provide an example of the ways 
climate changes will challenge energy, water, and land 
systems. (Figure source: NOAA NCDC, 2012).

 Coast-to-Coast 100-degree Days in 2011 
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Energy, water, and land interactions complicated and amplified 
the direct impacts on the electric sector. With electricity 
demands at all-time highs, water shortages threatened more 
than 3,000 megawatts of generating capacity – enough 
power to supply more than one million homes.9 As a result of 
the record demand and reduced supply, marginal electricity 
prices repeatedly hit $3,000 a megawatt hour, which is three 
times the maximum amount that generators can charge in 
deregulated electricity markets in the eastern United States.10 

Competition for water also intensified. More than 16% of 
electricity production relied on cooling water from sources 
that shrank to historically low levels,9 and demands for water 
used to generate electricity competed with simultaneous 
demands for agriculture and other human activities. City and 

regional managers rationed water to farms and urban 
areas, and in some instances, water was trucked 
to communities that lacked sufficient supplies.11 
As late as January 2012, customers of 1,010 Texas 
water systems were being asked to restrict water 
use; mandatory water restrictions were in place in 
647 water systems.12 At the same time, changing 
vegetation attributes, grazing, cropping, and 
wildfire compromised water quality and availability, 
increasing the amount of power required for water 
pumping and purification.

The Texas example shows how energy, land, water, 
and weather interacted in one region. Extreme 
weather events may affect other regions differently, 
because of the relative vulnerability of energy, water, 
and land resources, linkages, and infrastructure. 
For example, sustained droughts in the Northwest 
will affect how water managers release water from 
reservoirs, which in turn will affect water deliveries 
for ecosystem services, irrigation, recreation, 
and hydropower. Further complicating matters, 
hydropower is increasingly being used to balance 
variable wind generation in the Northwest, and 
seasonal hydroelectric restrictions have already 
created challenges to fulfilling this role. In the 
Midwest, drought poses challenges to meeting 

electricity demands because diminished water availability 
and elevated water temperatures reduce the efficiency of 
electricity generation by thermoelectric power plants. To 
protect water quality, federal and state regulations can require 
suspension of operations of thermoelectric power plants 
if water used to cool the power plants exceeds established 
temperature thresholds as it is returned to streams.  

Energy, land, water, and weather interactions are not limited 
to drought. For instance, 2011 also saw record flooding in the 
Mississippi basin. Floodwaters surrounded the Fort Calhoun 
nuclear power plant in Nebraska, shut down substations, and 
caused a wide range of energy, land, and water impacts (Ch. 
3: Water).

Interactions of Energy, Water, and Land Uses
Figure 10.4 depicts the current mix of energy, water, and land 
use within each U.S. region. The mixes reflect competition 
for water and land resources, but more importantly for the 
purposes here, the mixes reflect linkages across the energy, 
water, and land sectors as well as linkages to climate. For 
example, higher water withdrawal for thermoelectric power 
(power plants that use a steam cycle to generate electricity) 
generally reflects electric generation technology choices 
(often coal-, gas-, or nuclear-fired generation with open loop 
cooling) that assume the availability of large quantities of 

water. Therefore, the choice of energy technology varies based 
on the available resources in a region. Similarly, land-water 
linkages are evident in cropland and agricultural water use. 
The potential growth in renewable energy may strengthen the 
linkage between energy and land (see “Examples of Energy, 
Water, and Land Linkages”). Climate change affects each sector 
directly and indirectly. For instance, climate change affects 
water supplies, energy demand, and land productivity, all of 
which can affect sector-wide decisions. 

Figure 10.3. Graph shows average summer temperature and total rainfall 
in Texas from 1895 through 2012. The red dots illustrate the range of 
temperatures and rainfall observed over time. The record temperatures 
and drought during the summer of 2011 (large red dot) represent 
conditions far outside those that have occurred since the instrumental 
record began.4 An analysis has shown that the probability of such an event 
has more than doubled as a result of human-induced climate change3.
(Figure source: NOAA NCDC / CICS-NC).

 Texas Summer 2011: 
Record Heat and Drought 
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Figure 10.4. U.S. regions differ in the manner and intensity with which they use, or have available, energy, water, and 
land. Water bars represent total water withdrawals in billions of gallons per day (except Alaska and Hawai‘i, which are 
in millions of gallons per day); energy bars represent energy production for the region in 2012; and land represents land 
cover by type (green bars) or number of people (black and green bars). Only water withdrawals, not consumption, are 
shown (see Ch. 3: Water). Agricultural water withdrawals include irrigation, livestock, and aquaculture uses. (Data from 
EIA 201213 [energy], Kenny et al. 200914 [water], and USDA ERS 200715 [land]). 

Regional Water, Energy, and Land Use, with Projected Climate Change Impacts
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Key Message 2: Options for Reducing Emissions and Climate Vulnerability 

The dependence of energy systems on land and water supplies will influence the  
development of these systems and options for reducing greenhouse gas emissions,  

as well as their climate change vulnerability.

Interactions among energy, water, and land resources have in-
fluenced and will continue to influence selection and operation 

of energy technologies. In some situations, land and water con-
straints also pose challenges to technology options for reducing 

Figure 10.5. Technology choices can significantly affect water and land use. These two panels show a selection of technologies. 
Ranges in water withdrawal/consumption reflect minimum and maximum amounts of water used for selected technologies. Carbon 
dioxide capture and storage (CCS) is not included in the figures, but is discussed in the text. The top panel shows water withdrawals 
for various electricity production methods. Some methods, like most conventional nuclear power plants that use “once-through” 
cooling systems, require large water withdrawals but return most of that water to the source (usually rivers and streams). For nuclear 
plants, utilizing cooling ponds can dramatically reduce water withdrawal from streams and rivers, but increases the total amount of 
water consumed. Beyond large withdrawals, once-through cooling systems also affect the environment by trapping aquatic life in 
intake structures and by increasing the temperature of streams.18 Alternatively, once-through systems tend to operate at slightly better 
efficiencies than plants using other cooling systems. The bottom panel shows water consumption for various electricity production 
methods. Coal-powered plants using recirculating water systems have relatively low requirements for water withdrawals, but consume 
much more of that water, as it is turned into steam. Water consumption is much smaller for various dry-cooled electricity generation 
technologies, including for coal, which is not shown. Although small in relation to cooling water needs, water consumption also 
occurs throughout the fuel and power cycle.19 (Figure source: Averyt et al. 201120).

Water Use for Electricity Generation by Fuel and Cooling Technology 
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greenhouse gas emissions. For example, 
with the Southwest having most of the 
potential for deployment of concen-
trating solar technologies, facilities will 
need to be extremely water-efficient 
in order to compete for limited water 
resources. While wind farms avoid im-
pacts on water resources, issues con-
cerning land use, wildlife impacts, the 
environment, and aesthetics are often 
encountered. Raising crops to produce 
biofuels uses arable land and water that 
might otherwise be available for food 
production. This fact came into stark 
focus during the summer of 2012, when 
drought caused poor corn harvests, in-
tensifying concerns about allocation of 
the harvest for food versus ethanol.16 

Competition for water supplies is en-
couraging deployment of technologies 
that are less water-intensive than coal 
or nuclear power with once-through 
cooling. For example, wind, natural gas, 
photovoltaic (solar electric),  and even 
thermoelectric generation with dry 
cooling use less water. Challenges in sit-
ing land- and water-intensive energy fa-
cilities are likely to intensify over time as 
competition for these resources grows. 
Considering the interactions among en-
ergy, water, and land systems presents 
opportunities for further identification 
and implementation of energy options 
that can reduce emissions, promote 
resilience, and improve sustainability. 

Every option for reducing greenhouse gas emissions involves 
tradeoffs that affect natural resources, socioeconomic systems, 

and the built environment. Energy system 
technologies vary widely in their carbon 
emissions and their use of water and land. 
As such, there are energy-water-land trad-
eoffs and synergies with respect to adap-
tation and mitigation. Each choice involves 
assessing the relative importance of the 
tradeoffs related to these resources in 
the context of both short- and long-term 
risks (see “Examples of Energy, Water, and 
Land Linkages” that describes four tech-
nologies that could play key roles). Figure 
10.5 provides a systematic comparison of 
water withdrawals and consumptive use, 
illustrating the wide variation across both 
electric generation technologies and the 
accompanying cooling technologies. Car-
bon dioxide capture and storage (CCS) is 
not included in the chart, but coal-fired 

Figure 10.6. The figure shows illustrative projections for 2030 of the total land-use 
intensity associated with various electricity production methods. Estimates consider 
both the footprint of the power plant as well as land affected by energy extraction. There 
is a relatively large range in impacts across technologies. For example, a change from 
nuclear to wind power could mean a significant change in associated land use. For 
each electricity production method, the figure shows the average of a most-compact 
and least-compact estimate for how much land will be needed per unit of energy. The 
figure uses projections from the Energy Information Administration Reference scenario 
for the year 2030, based on energy consumption by fuel type and power plant “capacity 
factors” (the ratio of total power generation to maximum possible power generation). 
The most-compact and least-compact estimates of biofuel land-use intensities reflect 
differences between current yield and production efficiency levels and those that are 
projected for 2030 assuming technology improvements.21 (Figure source: adapted from 
McDonald et al. 200921).

Projected Land-use Intensity in 2030
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power plants (both evaporative cooling and dry cooling) fitted 
with CCS would consume twice as much water per unit of elec-
tricity generated as similar coal-fired facilities without CCS.17 
Figure 10.6 shows projected land-use intensity in 2030 for vari-
ous electricity production methods. Describing land use with a 
single number is valuable, but must be considered with care. For 
example, while wind generation can require significant amounts 
of land, it can co-exist with other activities such as farming and 
grazing, while other technologies may not be compatible with 
other land uses. Land and water influences on energy produc-
tion capacity are expected to get stronger in the future, and 
greater resource scarcity will shape investment decisions.

Every adaptation and mitigation option involves tradeoffs in 
how it increases or decreases stress on energy systems and 
water and land resources. For a selected set of mitigation and 
adaptation measures, Table 10.1 provides a summary illustrating 
qualitatively how different technologies relate to energy, water, 
and land.1

Particularly relevant to climate change mitigation are the ener-
gy, water, and land risks associated with low-carbon electricity 
generation. For example, expansion of nuclear power and coal 
power with CCS are two measures that have been discussed as a 

potential part of a future decarbonized energy system.22,23 Both 
are also potentially water intensive and therefore have vulner-
abilities related to climate impacts and competing water uses. 
Alternatively, renewable generation and combined cycle gas and 
coal have relatively modest water withdrawals (see also EPRI 
201124). Overall, energy, water, and land sector vulnerabilities 
are important factors to weigh in considering alternative elec-
tricity generation options and cooling systems. 

Bioenergy also presents opportunities for mitigation, but some 
potential bioenergy feedstocks are land and water intensive. 
Where land and water resources are limited, bioenergy may 
therefore be at risk of competing with other uses of land and 
water, and climate changes present additional challenges. Other 
mitigation options, such as afforestation (re-establishment of 
forests), forest management, agricultural soil management, 
and fertilizer management are also tied intimately into the in-
terfaces among land availability, land management, and water 
resource quantity and quality.25 

Some sector-specific mitigation and adaptation measures can 
provide opportunities to enhance climate mitigation or adap-
tation objectives in the other sectors. However, other mea-
sures may have negative impacts on mitigation or adaptation 

Table 10.1. Energy, water, and land sectoral impacts associated with a sample of climate mitigation and adaptation measures. Plus 
sign means a positive effect (reduced stress) on sector, minus sign means a negative effect (increased stress) on sector. Blank means 
effect not noted. Blue means consideration of energy extraction and power plant processes. It is important to keep in mind that this 
table only reflects physical synergies and tradeoffs. There are, of course, economic tradeoffs as well in the form of technology costs 
and societal concerns, such as energy security, food security, and water quality. Expansion of hybrid or dry-cooled solar technologies, 
versus wet, could help reduce water risks. For a more detailed description of the entries in the table, see Skaggs et al. 2012.1 Additional 
considerations regarding energy extraction, power plant processes, and energy use associated with irrigation were added to those 
reflected in Skaggs et al. 20121 (Adapted from Skaggs et al. 20121). 

Mitigation measures Water Land Energy

Switch from coal to natural gas fueled power plants + and – + and –

Expand CCS to fossil-fueled power plant – –

Expansion of nuclear power –

Expansion of wind + –

Expansion of solar thermal technologies (wet cooled) – –

Expansion of commercial scale photovoltaic + –

Expansion of hydropower + and – – +

Expansion of biomass production for energy + and – + and –

Adaptation measures Water Land Energy

Switch from once-through to recirculating cooling in thermoelectric power plants + and – -

Switch from wet to dry cooling at thermoelectric power plants + -

Desalinization + and – + + and –

New storage and conveyance of water + and – – –

Switch to drought-tolerant crops in drought vulnerable regions + – +
Increase transmission capacity to urban areas to reduce power outages 
during high demand periods – +
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potential in other sectors. If such cross-
sector impacts are not considered, they 
can diminish the effectiveness of climate 
mitigation and adaptation actions.

For example, switching from coal- to natu-
ral-gas-fired electricity generation reduc-
es the emissions associated with power 
generation. Depending on the situation, 
the switch to natural gas in the energy 
sector can either improve or reduce adap-
tive capacity in the water sector. Natural 
gas can reduce water use for thermoelec-
tric cooling (gas-fired plants require less 
cooling water), but natural gas extraction 
techniques consume water, so water avail-
ability must be considered. In addition, 
gas production has the potential to affect 
land-based ecosystems by, for example, 
fragmenting habitat and inhibiting wildlife 
migration. Future improvements in natural 
gas technologies and water reuse may re-
duce the possibility of negative impacts on water supplies and 
enhance the synergies across the energy, water, and land inter-
face. Incorporating consideration of such cross-sector interac-
tions in planning and policy could affect sectoral decisions and 
decisions related to climate mitigation and adaptation. 

Changes in the availability of water and land due to climate 
change and other effects of human activities will affect loca-
tion, design, choice, and operations of energy technologies 
in the future and, in some cases, constrain their deployment. 

Energy, water, and land linkages represent constraints, risks, 
and opportunities for private/public planning and investment 
decisions. “Examples of Energy, Water, and Land Linkages” be-
low discusses four energy sector technologies that could con-
tribute to reducing U.S. emissions of greenhouse gases and in-
creasing energy security – natural gas from shale, solar power, 
biofuels, and CCS. These technologies were chosen to illustrate 
energy, water, and land linkages and other complexities for the 
design, planning, and deployment of our energy future.
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ExamplEs of EnErgy, watEr, and land linkagEs

Continued

Shale Natural Gas and Hydraulic Fracturing

The U.S. Energy Information Admin-
istration projects a 29% increase 
in U.S. natural gas production by 
2035, driven primarily by the eco-
nomics of shale gas.13 As an energy 
source, natural gas (methane) can 
have a major advantage over coal 
and oil: when combusted, it emits 
less carbon dioxide per unit energy 
than other fossil fuels, and fewer pol-
lutants like black carbon (soot) and 
mercury (see Ch. 27: Mitigation). An 
increase in natural gas consumption 
could lead to a reduction in U.S. 
greenhouse gas emissions compared 
to continued use of other fossil fuels. 
Disadvantages include the possibil-
ity that low-cost gas could supplant 
deployment of low-carbon generation 
technologies, such as nuclear power 
and renewable energy. In addition, 
the U.S. Environmental Protec-
tion Agency estimates that 6.9 mil-
lion megatons of methane – with a 
global warming potential equivalent 
to 144.7 million megatons of CO2 – 
is emitted from the U.S. natural gas 
system through uncontrolled venting 
and leaks from drilling operations, 
pipelines, and storage tanks (see Ch. 
15: Biogeochemical Cycles; Ch. 27: 
Mitigation).26 There is considerable 
uncertainty about these estimates, 
and it is an active area of research. 
While technological improvements 
may reduce this leakage rate,26 leak-
age makes the comparison between 
natural gas and coal more complex 
from a climate perspective.27 For ex-
ample, methane is a stronger green-
house gas than carbon dioxide but has a much shorter atmospheric lifetime (see Ch. 15: Biogeochemical Cycles; Ch. 27: 
Mitigation; Appendix 3: Climate Science; Appendix 4: FAQs).

Recent reductions in natural gas prices are largely due to advances in hydraulic fracturing, which is a drilling method used 
to retrieve deep reservoirs of natural gas. Hydraulic fracturing injects large quantities of water, sand, and chemicals at high 
pressure into horizontally-drilled wells as deep as 10,000 feet below the surface in order to break the shale and extract 
natural gas.28 Questions about the water quantity necessary and the potential to affect water quality have produced national 

Figure 10.7. Hydraulic fracturing, a drilling method used to retrieve deep reservoirs 
of natural gas, uses large quantities of water, sand, and chemicals that are injected 
at high pressure into horizontally-drilled wells as deep as 10,000 feet below Earth’s 
surface. The pressurized mixture causes the rock layer to crack. Sand particles hold 
the fissures open so that natural gas from the shale can flow into the well. Questions 
about the water quantity necessary for this extraction method as well as the potential 
to affect water quality have produced national debate. (Figure source: NOAA NCDC).

Hydraulic Fracturing and Water Use
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ExamplEs of EnErgy, watEr, and land linkagEs (continuEd)

Continued

debate about this method. Federal government and state-led efforts are underway to identify, characterize, and if necessary, 
find approaches to address these issues (for example, EPA 2011; FracFocus 201229).

A typical shale gas well requires from two to four million gallons of water to drill and fracture (equivalent to the annual water 
use of 20 to 40 people in the U.S, or three to six Olympic-size swimming pools).28 The gas extraction industry has begun 
reusing water in order to lower this demand. However, with current technology, recycling water can require energy-intensive 
treatment, and becomes more difficult as salts and other contaminants build up in the water with each reuse.30 In regions 
where climate change leads to drier conditions, hydraulic fracturing could be vulnerable to climate change related reductions 
in water supply.

Shale gas development also requires land. To support the drilling and hydraulic fracturing process, a pad, which may be 
greater than five acres in size, is constructed.31 Land for new roads, compressor stations, pipelines, and water storage ponds 
are also required. 

The competition for water is expected to increase in the future. State and local water managers will need to assess how gas 
extraction competes with other priorities for water use, including electricity generation, irrigation, municipal supply, industry 
use, and livestock production. Collectively, such interactions between the energy and water resource sectors increase vulner-
ability to climate change, particularly in water-limited regions 
that are projected to, or become, significantly drier. 

Solar Power Generation

Solar energy technologies have the potential to satisfy a sig-
nificant portion of U.S. electricity demand and reduce green-
house gas emissions. The land and water requirements for 
solar power generation depend on the mix of solar technolo-
gies deployed. Small-scale (such as rooftop) installations are 
integrated into current land use and have minimal water re-
quirements. In contrast, utility-scale solar technologies have 
significant land requirements and can – depending upon the 
specific generation and cooling technologies – also require 
significant water resources. For instance, utility-scale photo-
voltaic systems can require three to ten acres per megawatt 
(MW) of generating capacity32 and consume as much as five 
gallons of water per megawatt hour (MWh) of electricity pro-
duction. Utility-scale concentrating solar systems can require 
up to 15 acres per MW33 and consume 1,040 gallons of water 
per MWh34 using wet cooling (and 97% less water with dry cooling). A recent U.S. Department of Energy study concluded 
that 14% of the U.S. demand for electricity could be met with solar power by 2030.34 To generate that amount of solar power 
would require rooftop installations plus about 0.9 million to 2.7 million acres, equivalent to about 1% to 4% of the land area 
of Arizona, for utility-scale solar power systems and concentrating solar power (CSP).34

Recognizing water limitations, most large-scale solar power systems now in planning or development are designed with dry 
cooling that relies on molten salt or other materials for heat transfer. However, while dry cooling systems reduce the need 
for water, they have lower plant thermal efficiencies, and therefore reduced production on hot days.35 Overall, as with other 
generation technologies, plant designs will have to carefully balance cost, operating issues, and water availability.

Biofuels

Biomass-based energy is currently the largest renewable energy source in the U.S., and biofuels from crops, grass, and 
trees are the fastest growing renewable domestic bioenergy sector.13 In 2011, approximately 40 million acres of cropland in 
the U.S. were used for ethanol production, roughly 16% of the land planted for the eight major field crops.37 The long-term 
environmental and social effects of biofuel production and use depend on many factors: the type of feedstock, manage-

Figure 10.8. Photovoltaic panels convert sunlight directly 
into electricity. Utility-sized solar power plants require 
large tracts of land. Photo shows Duke Energy’s 113-acre 
Blue Wing Solar Project in San Antonio, Texas, one of 
the largest photovoltaic solar farms in the country. (Photo 
credit: Duke Energy 201036).

Renewable Energy and Land Use
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ment practices used to produce them, fuel production and conversion technologies, prior land use, and land- and water-use 
changes caused by their production and use.38,39 Biofuels potentially can reduce greenhouse gas emissions by displacing 
fossil fuel consumption. Biofuels that comply with the Energy Independence and Security Act of 2007 are required to reduce 
greenhouse gas emissions relative to fossil fuels. In addition, biofuels also have the potential to provide net environmental 
benefits compared to fossil fuels. For example, ethanol is used as a gasoline additive to meet air quality standards, replacing 
a previous additive that leaked from storage tanks and contaminated groundwater.40 However, increases in corn production 
for biofuel has been cited as contributing to harmful algal blooms.38 

Currently, most U.S. biofuels, primarily ethanol (from corn) and biodiesel (mainly from soy), are produced from edible parts 
of crops grown on rain-fed land. Consumptive water use over the life cycle of corn-grain ethanol varies widely, from 15 gal-
lons of water per gallon of gasoline equivalent for rain-fed corn-based ethanol in Ohio, to 1,500 gallons of water per gallon of 
gasoline equivalent for irrigated corn-based ethanol in New Mexico. In comparison, producing and refining petroleum-based 
fuels uses 1.9 to 6.6 gallons of water per gallon of gasoline.38,41

The U.S. Renewable Fuels Standard (RFS) aims to expand production of cellulosic ethanol to at least 16 billion gallons per 
year by 2022. Cellulosic biofuels, derived from the entire plant rather than just the food portions, potentially have several 
advantages, such as fewer water quality impacts,42 less water consumption, and the use of forest-derived feedstocks.38 Cel-
lulosic biofuels have not yet been produced in large volumes in the United States. The RFS target could require up to an 
additional 30 to 60 million acres of land, or alternatively be sourced from other feedstocks, such as forest and agricultural 
residues and municipal solid waste, but such supplies are projected to be inadequate for meeting the full cellulosic biofuel 
standard.38 

Conversion of land not in cropland to crops for biofuel production may increase water consumption and runoff of fertilizers, 
herbicides, and sediment.43 The impacts of climate change, particularly in areas where water availability may decrease (see 
Ch. 2: Our Changing Climate, Ch. 3: Water, and Ch. 6: Agriculture), however, may make it increasingly difficult to raise crops 
in arid regions of the country. The use of crops that are better suited to arid conditions and are efficient in recycling nutrients, 
such as switchgrass for cellulosic ethanol, could lower the vulnerability of biofuel production to climate change.44 Another 
potential source of biomass for biofuel production is microalgae, but the existing technologies are still not carbon neutral, 
nor commercially viable.45

Carbon Capture and Storage

Carbon capture and storage (CCS) technologies have the potential to capture 90% of CO2 emissions from coal and natural 
gas combustion by industrial and electric sector facilities and thus allow continued use of low-cost fossil fuels in a carbon-
constrained future.46 CCS captures CO2 post- or pre-fuel combustion and injects the CO2 into geologic formations for long-
term storage. In addition, combining CCS with bioenergy applications represents one of a few potential options for actually 
removing CO2 from the atmosphere47 because carbon that was recently in the atmosphere and accumulated by growing 
plants can be captured and stored. 

CCS substantially increases the cost of building and operating a power plant, both through up-front costs and additional 
energy use during operation (referred to as “parasitic loads” or an energy penalty).46 Substantial amounts of water are also 
used to separate CO2 from emissions and to generate the required parasitic energy. With current technologies, CCS can in-
crease water consumption 30% to 100%.48 Gasification technologies, where coal or biomass are converted to gases and CO2 
is separated before combustion, reduce the energy penalty and water requirements, but currently at higher capital costs.49 
As with other technologies, technology and design choices for CCS need to be balanced with water requirements and water 
availability. Climate change will influence the former via effects on energy demand and the latter via precipitation changes. 
CCS facilities themselves have relatively modest land demands compared to some other generation options. However, bio-
energy use with CCS would imply a much stronger land linkage.

CCS facilities for electric power plants are currently operating at pilot scale, and a commercial scale demonstration project 
is under construction.50 Although the potential opportunities are large, many uncertainties remain, including cost, demon-
stration at scale, environmental impacts, and what constitutes a safe, long-term geologic repository for sequestering carbon 
dioxide.51
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Key Message 3: Challenges to Reducing Vulnerabilities 

Jointly considering risks, vulnerabilities, and opportunities associated with energy, water,  
and land use is challenging, but can improve the identification and evaluation of options  

for reducing climate change impacts.

The complex nature of interactions among energy, water, and 
land systems, particularly in the context of climate change, 
does not lend itself to simple solutions. The energy, water, 
and land interactions themselves create vulnerabilities to 
competing resource demands. Climate change is an additional 
stressor. However, resource management decisions are often 
focused on just one of these sectors. Where the three sectors 
are tightly coupled, options for mitigating or adapting to 
climate change and consideration of the tradeoffs associated 
with technological or resource availability may be limited. 
The complex nature of water and energy systems are also 
highlighted in Chapter 3 (Water), which discusses water 
constraints in many areas of the U.S., and in Chapter 4 (Energy), 
where it is noted that there will be challenges across the nation 

for water quality to comply with thermal regulatory needs for 
energy production. 

A changing climate, particularly in areas projected to be warmer 
and drier, is expected to lead to drought and stresses on water 
supply, affecting energy, water, and land sectors in the United 
States. As the Texas drought of 2011 and 2012 illustrates, 
impacts to a particular sector, such as energy production, 
generate consequences for the others, such as water resource 
availability. Similarly, new energy development and production 
will require careful consideration of land and water sector 
resources. As a result, vulnerability to climate change depends 
on energy, water, and land linkages and on climate risks across 
all sectors, and decision-making is complex.

Figure 10.9. In many parts of the country, competing demands for water create stress in local and regional 
watersheds. Map shows a “water supply stress index” for the U.S. based on observations, with widespread 
stress in much of the Southwest, western Great Plains, and parts of the Northwest. Watersheds are 
considered stressed when water demand (from power plants, agriculture, and municipalities) exceeds 40% 
(water supply stress index of 0.4) of available supply. (Figure source: Averyt et al. 201120).

Water Stress in the U.S. 
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The Columbia River Basin is one example of an area where risks, 
vulnerabilities, and opportunities are being jointly considered 
by a wide range of stakeholders and decision-makers (see Ch. 
28: Adaptation). The Columbia River, which crosses the U.S.-
Canada border, is the fourth largest river on the continent by 
volume, and it drives the production of more electricity than 
any other river in North America. Approximately 15% of the 
Columbia River Basin lies within British Columbia (Figure 10.10), 
but an average of 30% of the total average discharge originates 
from the Canadian portion of the watershed.52 To provide flood 
control for the U.S. and predicted releases for hydropower 
generation, the Columbia River system is managed through 
a treaty that established a cooperative agreement between 
the United States and Canada to regulate the river for these 
two uses.53 The basin also supports a range of other uses, such 
as navigation, tribal uses, irrigation, fish and wildlife habitat, 
recreation, and water resources for agricultural, industrial, and 
individual use. For all multi-use river basins, understanding 

the combined vulnerability of energy, water, and land use to 
climate change is essential to planning for water management 
and climate change adaptation.

A recent report projects a warmer annual, and drier summer, 
climate for the Northwest (Ch. 21: Northwest; Ch. 2: Our 
Changing Climate, Figures 2.14 and 2.15; Appendix 3: Climate 
Science Supplement, Figures 21 and 22),54 potentially affecting 
both the timing and amounts of water availability. For example, 
if climate change reduces streamflow at certain times, fish and 
wildlife, as well as recreation, may be vulnerable.55 Climate 
change stressors will also increase the vulnerability of the 
region’s vast natural ecosystems and forests in multiple ways 
(see Ch. 7: Forests and Ch. 8: Ecosystems). Currently, only 30% of 
annual Columbia River Basin runoff can be stored in reservoirs.56 
Longer growing seasons might provide opportunities for 
greater agricultural production, but the projected warmer and 
drier summers could increase demand for water for irrigation, 

Figure 10.10. Agriculture is in yellow, forests are shades of green, shrublands are gray, and urban areas are in red. The river is 
used for hydropower generation, flood control, agriculture irrigation, recreation, support of forest and shrubland ecosystems, and 
fish and wildlife habitat. Climate change may impact the timing and supply of the water resources, affecting the multiple uses of 
this river system. (Figure source: Northwest Habitat Institute 1999).

The Columbia River Basin Land Use and Land Cover
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perhaps at the expense of other water uses 
due to storage limitations. Wetter winters 
might offset increased summer demands. 
However, the storage capacities of many 
water reservoirs with multiple purposes, 
including hydropower, were not designed 
to accommodate significant increases 
in winter precipitation. Regulations and 
operational requirements also constrain 
the ability to accommodate changing 
precipitation patterns (see Ch. 3: Water). 

Because of the complexity of interactions 
among energy, water, and land systems, 
considering the complete picture of climate 
impacts and potential adaptations can help 
provide better solutions. Adaptation to 
climate change occurs in large part locally 
or regionally, and conflicting stakeholder 
priorities, institutional commitments, 
and international agreements have the 
potential to complicate or even compromise 
adaption strategies with regard to energy, water, and land 
resources (see also Ch. 28: Adaptation). Effective adaptation to 
the impacts of climate change requires a better understanding 
of the interactions among the energy, water, and land resource 
sectors. Whether managing for water availability and quality in 
the context of energy systems, or land restrictions, or both, an 
improved dialog between the scientific and decision-making 

communities will be necessary to evaluate tradeoffs and 
compromises needed to manage and understand this complex 
system. This will require not only integrated and quantitative 
analyses of the processes that underlie the climate and natural 
systems, but also an understanding of decision criteria and risk 
analyses to communicate effectively with stakeholders and 
decision-makers.
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SUPPLEMENTAL MATERIAL
TRACEABLE ACCOUNTS

Process for Developing Key Messages 
The authors met for a one-day face-to-face meeting, and held 
teleconferences approximately weekly from March through Au-
gust 2012. They considered a variety of technical input docu-
ments, including a Technical Input Report prepared through an 
interagency process,

1
 and 59 other reports submitted through the 

Federal Register Notice request for public input. The key mes-
sages were selected based on expert judgment, derived from the 
set of examples assembled to demonstrate the character and 
consequences of interactions among the energy, water, and land 
resource sectors.

Key message #1 Traceable accounT

Energy, water, and land systems interact in many 
ways. Climate change affects the individual sec-
tors and their interactions; the combination of these 
factors affects climate change vulnerability as well 
as adaptation and mitigation options for different 
regions of the country.

Description of evidence base
The key message and supporting text summarizes extensive evi-
dence documented in the Technical Input Report (TIR): Climate 
and Energy-Water-Land System Interactions: Technical Report to 
the U.S. Department of Energy in Support of the National Climate 
Assessment.

1
 Technical input reports (59) on a wide range of top-

ics were also received and reviewed as part of the Federal Register 
Notice solicitation for public input. 

The TIR
1
 incorporates the findings of a workshop, convened by the 

author team, of experts and stakeholders. The TIR summarizes 
numerous examples of interactions between specific sectors, such 
as energy and water or water and land use. A synthesis of these 
examples provides insight into how climate change impacts the 
interactions between these sectors.

The TIR
1
 shows that the character and significance of interac-

tions among the energy, water, and land resource sectors vary 
regionally. Additionally, the influence of impacts on one sector for 
the other sectors will depend on the specific impacts involved. 
Climate change impacts will affect the interactions among sectors, 
but this may not occur in all circumstances.

The key message is supported by the National Climate Assess-
ment Climate Scenarios (for example, Kunkel et al. 2013

54
). Many 

of the historic trends included in the Climate Scenarios are based 
on data assembled by the Cooperative Observer Network of the 
National Weather Service (http://www.nws.noaa.gov/om/coop/). 
Regional climate outlooks are based on the appropriate regional 
chapter.

The Texas drought of 2011 and 2012 provides a clear example 
of cascading impacts through interactions among the energy, wa-
ter, and land resource sectors.

3,4,5,7,8,9
 The U.S. Drought Monitor 

(http://droughtmonitor.unl.edu/) provides relevant historical data. 
Evidence also includes articles appearing in the public press

11
 and 

Internet media.
6

New information and remaining uncertainties
The Texas drought of 2011 and 2012 demonstrates the occur-
rence of cascading impacts involving the energy, land, and water 
sectors; however, the Texas example cannot be generalized to all 
parts of the country or to all impacts of climate change (for exam-
ple, see Chapter 3 for flooding and energy system impacts). The 
Technical Input Report

1
 provides numerous additional examples 

and a general description of interactions that underlie cascading 
impacts between these resource sectors.

There are no major uncertainties regarding this key message. 
There are major uncertainties, however, in the magnitude of im-
pacts in how decisions in one sector might affect another. The 
intensity of interactions will be difficult to assess under climate 
change.

Assessment of confidence based on evidence 
Given the evidence base and remaining uncertainties, confidence 
is high. The primary limitation on the confidence assigned to this 
key message is with respect to its generality. The degree of inter-
actions among the energy, water, and land sectors varies region-
ally as does the character and intensity of climate change.
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Key message #2 Traceable accounT

The dependence of energy systems on land and 
water supplies will influence the development of 
these systems and options for reducing greenhouse 
gas emissions, as well as their climate change vul-
nerability.

Description of  evidence base
The key message and supporting text summarizes extensive evi-
dence documented in the Technical Input Report (TIR): Climate 
and Energy-Water-Land System Interactions: Technical Report to 
the U.S. Department of Energy in Support of the National Climate 
Assessment.

1
 Technical input reports (59) on a wide range of top-

ics were also received and reviewed as part of the Federal Register 
Notice solicitation for public input. 

Synthesis and Assessment Product 2.1 of the Climate Change 
Science Program,

22
 which informed the prior National Climate 

Assessment,
57

 describes relationships among different future 
mixtures of energy sources, and associated radiative forcing of 
climate change, as a context for evaluating emissions mitigation 
options.

Energy, water, and land linkages represent constraints, risks, and 
opportunities for private/public planning and investment deci-
sions. There are evolving water and land requirements for four 
energy technologies: natural gas from shale,

13
 solar power,

34
 bio-

fuels,
38,39

 and carbon dioxide capture and storage (CCS).
47

 Each 

Confidence Level
Very High

Strong evidence (established 
theory, multiple sources, consistent 

results, well documented and 
accepted methods, etc.), high 

consensus

High

Moderate evidence (several sourc-
es, some consistency, methods 

vary and/or documentation limited, 
etc.), medium consensus

Medium

Suggestive evidence (a few 
sources, limited consistency, mod-
els incomplete, methods emerging, 
etc.), competing schools of thought

Low

Inconclusive evidence (limited 
sources, extrapolations, inconsis-
tent findings, poor documentation 
and/or methods not tested, etc.), 
disagreement or lack of opinions 

among experts

of these four technologies could contribute to reducing U.S. emis-
sions of greenhouse gases. These technologies illustrate energy, 
water, and land linkages and other complexities for the design, 
planning, and deployment of our energy future.

Evidence for energy production and use are derived from U.S. 
government reports.

58
 The contributions of hydraulic fracturing to 

natural gas production are based on a brief article by the Energy 
Information Administration

13
 and a primer by the U.S. Department 

of Energy.
28

 Information about water and energy demands for 
utility-scale solar power facilities is derived from two major DOE 
reports.

34,59
 Distribution of U.S. solar energy resources is from 

Web-based products of the National Renewable Energy Labora-
tory (http://www.nrel.gov/gis/). On biofuels, there are government 
data on the scale of biomass-based energy,

13
 and studies on water 

and land requirements  and other social and environmental as-
pects.

38,39
 

New information and remaining uncertainties
There are no major uncertainties regarding this key message. 
Progress in development and deployment of the energy technolo-
gies described has tended to follow a pattern: potential constraints 
arise because of dependence on water and land resources, but 
then these constraints motivate advances in technology to reduced 
dependence or result in adjustments of societal priorities. There 
are uncertainties in how energy systems’ dependence on water will 
be limited by other resources, such as land; uncertainties about 
the effects on emissions and the development and deployment of 
future energy technologies; and uncertainties about the impacts 
of climate change on energy systems.

Assessment of confidence based on evidence 
Given the evidence base and remaining uncertainties, confidence 
is high. The primary limitation on confidence assigned to this 
key message is with respect to its generality and dependence on 
technological advances. Energy technology development has the 
potential to reduce water and land requirements, and to reduce 
vulnerability to climate change impacts. It is difficult to forecast 
success in this regard for technologies such as CCS that are still 
in early phases of development.

Key message #3 Traceable accounT

Jointly considering risks, vulnerabilities, and op-
portunities associated with energy, water, and land 
use is challenging, but can improve the identifica-
tion and evaluation of options for reducing climate 
change impacts.

Description of evidence base
The key message and supporting text summarizes extensive evi-
dence documented in the Technical Input Report (TIR): Climate 
and Energy-Water-Land System Interactions: Technical Report to 
the U.S. Department of Energy in Support of the National Climate 
Assessment.

1
 Technical input reports (59) on a wide range of top-
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ics were also received and reviewed as part of the Federal Register 
Notice solicitation for public input. 

Interactions among energy, water, and land resource sectors can 
lead to stakeholder concerns that shape options for reducing vul-
nerability and thus for adapting to climate change. The Columbia 
River System provides a good example of an area where risks, 
vulnerabilities, and opportunities are being jointly considered.

55,56
 

The 2011 Mississippi basin flooding, which shut down substa-
tions, provides another example of the interactions of energy, 
water, and land systems (Ch. 3: Water). For all multi-use river 
basins, understanding the combined vulnerability of energy, water, 
and land use to climate change is essential to planning for water 
management and climate change adaptation. 

New information and remaining uncertainties
There are no major uncertainties regarding this key message; 
however, it is highly uncertain the extent to which local, state 
and national policies will impact options to reduce vulnerability to 
climate change. 

Assessment of confidence based on evidence
Given the evidence base and remaining uncertainties, confidence 
is high. The primary limitation on confidence assigned to this key 
message is with respect to the explicit knowledge of the unique 
characteristics of each region with regards to impacts of climate 
change on energy, water, land, and the interactions among these 
sectors.


